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Introduction

Visby Camera Corporation (Visby) has delivered an API to its
light field rendering system to Charter Communications; the two

together have demonstrated the playback of a video light field into a
positionally-tracked virtual reality headset over a DOCSIS network. Content
Visby has made additional investigations into the light field Server -
streaming system to understand how such systems can and will be  Light Field . User
best deployed in the wild in order to deliver compelling visual expe- Data Fiber pose
riences given realistic network conditions and other constraints. We (%) (lrcs) (P)
specifically are interested in conveying knowledge and understanding v
of light field streaming over DOCSIS and related learnings: knowl- Renderer
edge that will inform how future streaming protocols, networks, etc. (Edge)
are built; and justify further investigations into light field streaming. Rendered T User
For example, consider the network schematic in Figure [1} a light Tmage(s) DOCSIS pose
field payload is stored on Content Server. The payload is transmitted ) ) (lcr) (B)
to Renderer, which, in real time, renders and serves requested views <+
to Client (e.g., headset or holographic panel) for display. Knowl- Client
edge and/or control over one link may be levered, e.g., to mitigate (playback)

deficiencies in the other link. Additionally, the global behavior of

the system imposes constraints on the network that can stream light

fields successtully. Figure 1: Diagram of potential light
The specific studies in this Report use internal Visby light field field streaming system architecture,

data sets empirically to explore some fast and implementable light separated into Content Server, Ren-

field data decimation strategies. The motivation is to describe and derer and Client components.

assess practical ways to reduce data transfer bandwidth from Content

Server to Renderer, and to understand their ramifications on other

salient system variables, such as system latency and quality of User experience.

0.1 Definitions

In the following discussions, we attempt to use the following terminology and notation consistently:

e BPP: “Bits-per-pixel” is a commonly used rate measurement in image compression. Unless otherwise
stated, “pixel” means a rendered output pixel, and “bits” means the sum total of bits required to
render that output pixel.



e Vv: a vector.

e v;: an element of v.

e |v|: the number of elements in v.

e x and X: the uncompressed, full light field, and its sub-sampled counterpart, respectively.
e y and ¥: an image rendered from x and X, respectively.

e Renderer: responsible for converting X into §.

e Content Server: responsible for converting x into X.

e Client: responsible for sending frame requests to the Renderer and receiving responses ().
e User: the end user of a head-mounted device connected to the Client.

e Stream: an atomic, independent constituent of an light field source, e.g. a feed or encoding from a
single camera of a multi-camera light field acquisition.

e Latency: the time it takes data to travel from one node to another in a network.

0.2 Experimental Clarifications

In the sections that follow, we compute BPP via Eq.
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This Report (and BPP calculations herein) focuses on uncompressed payloads, though the results can be
extrapolated with assumptions about further image or video compression. We assume each rendered frame
is a four-channel image with color (RGB) and alpha-mask (A) components.

Our results are derived from two experiences, each with its own subject matter: Ralphie (a dog) and
Michael (a man).

1 Lossless Compression: Stream Selection

One approach for limiting the bandwidth of transmitted content between Content Server and Renderer
nodes in Fig. [1]is to limit the sampling rate of x. We propose and implement a strategy whereby the set of
independent light field data streams S comprising x is sub-selected as a function of User position. We define
this quantity as p(t), a 3-vector specifying Cartesian coordinates, which varies with time ¢. The transmitted
content at time ¢, X(¢), would be comprised of S(p(t)) C S. In this analysis, we have not assumed a bound
on the User’s speed of head rotation.

1.1 Experiments

We conduct a number of numerical experiments using the Ralphie and Michael experiences, whereby S(p(t))
is measured at a regular (0.5s) sampling interval in a typical local streaming playback session. For each
experiment, the trajectory p(t) spans a typical user viewing box of 2m x 2m X 1m in depth, width, and
height, respectively, for 100s. We make ensure that the User’s head orientation is such that the experience
subject is view-centered.

First, we assume that the minimum number of streams available to the Renderer must accommodate the
set of streams required at time ¢y as well as any new streams that would be required by the time the request
for a stream set finally reaches the Renderer, ¢1, at which point the User’s position may have changed. We
assume that the difference between t; and tq is lgs:

lss = lcr + 2lRrcs (2)
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Figure 2: Dependency of BPP on latency lgg and User speed H.

where [cR is the latency between Client and Renderer, and [gcs is the latency between Renderer and Content
Server.

Second, we assume that a User’s head speed, H, is constant over the latency interval ¢y to ¢, and there-
fore all sub-intervals of the latency interval.

With an assumed H and lgg, we can use the sampled data to construct scenarios that maximize the
number of required streams during the latency interval. Formally, we find an approximate solution to Eq.[3]
noting that finding an exact solution is computationally intractableﬂ Our approximation is found by greedily
constructing a path traversal through the nodes S(p(t)). This path should simultaneously maximize the total
size of the set of streams required, and should not exceed the allowed time Igs.
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Here T is an index list representing an induced subpath on the set of sampled positions p;, succ( - ) represents
a successor of an item in a list, and T_; is the same as T with the last index removed.

For each (lss, H) pair over a Sensibleﬂ range of values of lgs and H, we approximate the solution
S(H,lss)max to Eq. , and use the BPP calculation in Eq. with %] = % x |x|. The results of
these experiments are plotted in Fig.

1.2 Discussion

In Fig. |2| we see that the data rate required increases with latency and head speed. Equally unsurprisingly,
for a fixed data rate, latency and head speed must vary inversely.

1Finding an optimal T is equivalent to finding the longest path in an undirected graph, which is NP-hard.
2We assume a round trip traversal of the width of the viewing box in 1 second and use the minimum and maximum from a
publicly available Internet latency table.
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One interesting insight from this analysis is that the range of data rates can vary dramatically depending
on the experience: ~300—500 BPP for Ralphie, and ~400—750 BPP for Michael. This is due to sharp
geometric differences between the respective experiences, the acquiring camera rig geometry, and the relative
positioning of experience subject and camera rig. Such prior knowledge can be used to allocate bandwidth
as a function of the User-selected experience. If the assumptions about latency and head speed are correct,
this data decimation strategy manifestly does not affect the quality of the rendered output.

Another potential use of this data in the context of adaptive streaming is the ability to define bandwidth
regimes. That is, if it is known that, for a given experience, a User limits her head speed to a fixed upper
bound, and her Client’s latency to a Content Server can be bounded, one may potentially operate in one of
the BPP regimes shown as isosurfaces in Fig. [2]

2 Lossy Compression: Sub-sampling

Here we present the result of employing a number of hybrid sub-sampling strategies of the input light fields
corresponding to the Ralphie and Michael experiences. The goal of this analysis is to convey a sense of the
impact of the resultant data rate on the quality of the rendered output.

2.1 Experiments

For each input light field dataset, we compute an image quality metric which quantifies the agreement
between the rendered output under sub-sampled conditions and the same output without sub-sampling the
input. We call this latter output “ground truth.” For each sub-sampling scheme, we target one of the output
resolutions shown in Table [II

Table 1: Output resolutions and corresponding commercial head-mounted displays.

Resolution | Headset(s)
1080x1200 HTC Vive, Oculus Rift
1280x1440 Oculus Rift S

1440x1600 | HTC Vive Pro, Oculus Quest

The image quality metrics are SSIM and MPSNR, defined as follows:

M
SSIM(y,§) = 27 > ( S T e (4)
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where the subscripts y,4 and ¢, are used to designate the i-th corresponding K x K windows in y and ¥,
respectively, and M is the number of windows. For the i-th K x K window in y, p,; is the average and
a;i is the variance. We denote oy, as the cross-correlation between the corresponding windows in y and
§. We define the constants C; = (kilnax)? and Cy = (kglpax)?, where L.y is the maximum possible pixel

value (255 for 8-bit images), and k1 = 0.01 and kg = 0.03.

SSIM computed against light field renders tend to be quite high. This is due to the presence of a relatively
small ratio of foreground to background pixels, and nearly empty (black) background, in the rendered output
image. We therefore suggest using an additional measure for comparisons: a masked version of PSNR,
MPSNR. This is defined in Eq.

R Imax2
MPSNR(y,§) = 10log,, (MMSE(yy)> ?
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Figure 3: Rate Distortion: SSIM vs BPP for varying output resolutions.
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Figure 4: Rate Distortion: MPSNR vs BPP for varying output resolutions.

where MMSE is the masked mean squared error, defined in Eq. [6}
1
MMSE(y,9) = +~ Dm0 (yi —9:))° (6)
Yi=1
Here, m is a binary mask representing all non-zero alpha regions in y, N, is the number of non-zero elements
in m, and the masking operation m ® y is the Hadamard product between m and y.

For each sub-sampled input light field X and its corresponding render ¥, we compute BPP according to
Eq.[ll To eliminate bias in the computation of our metric, we take the average across a uniform sampling of
viewpoints of the scene along a plane at a nominal distance (say z = 0) from the subject.

2.2 Discussion

In Fig. [3] we see that image quality generally increases as the rate increases. The inflection point across all
curves seems to be around 300-600 BPP. We believe this should generalize to other experience with similar
configurations to Ralphie and Michael.



In Fig. [ we see the same trend. Also, MPSNR is not trivially close to its maximum value across all
values of BPP, as it is for SSIM in Fig. |3 MPSNR may be a better metric to use.

(a) Low: ~ 30 BPP. (b) Medium: ~ 350 BPP. (c¢) High: ~ 1400 BPP.

Figure 5: Ralphie experience rendered outputs at 1080x1200 resolution with varying levels of sub-sampling
applied.

(a) Low: ~ 30 BPP. (b) Medium: ~ 350 BPP. (c) High: ~ 1400 BPP.

Figure 6: Michael experience rendered outputs at 1080x1200 resolution with varying levels of sub-sampling
applied.

Figs. [5] and [6] show a few sample renders corresponding to points along the curves in Figs. [3]and [ The
gains in perceptual quality from “Low” to “Medium” sub-sampling seem to be higher than from “Medium”



to “High,” suggesting diminishing returns in allocating more bits per output pixel for a given output render
size.

3 Future Work

In this section, we summarize and suggest improvements to the findings of this Report.

In Sec. [T} we found that online sub-selecting streams of a light field source can reduce bandwidth require-
ments by more than 50%, without any loss in quality. Here, we assumed that the switching cost of such an
adaptive streaming approach would be negligible in comparison to the network latencies. We also assumed
that keeping sub-selected streams in sync with un-selected streams incurs no latency cost. A more accurate
analysis would explicitly model these variables.

In Sec. |2} we found that deterministic sub-sampling of the light field source can also reduce bandwidth
requirements by up to twofold, at a substantial reduction in visual fidelity. Along this frontier, we may
find the best trade-off between distortion and rate by pre-computing rate-distortion curves and utilizing this
information to respond to variable network conditions. A promising extension of this work would be to
incorporate the online stream-selection strategy in Sec. [1| with the strategies employed here.

For both Secs. [1] and [2] it would be beneficial to examine the bandwidth reduction strategies in the
context of light field video and under the assumption of a compressed input. Online (de)compression of the
input light field source could dramatically reduce bitrates, but would incur some data fidelity loss along with
system latencies in excess of what has been discussed in this Report.
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